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Abstract. We answer the questions asked in article [FGT]. The first

main result states that for every admissible ideal I ⊂ P(N) the quotient

space l∞(I)/c0(I) is complete. The second main result states that con-

sistently there is an admissible ideal I ⊂ P(N) such that the sets W (I),

of all real sequences with finite I-variation, and c∗(I), of all restrictively

I-convergent sequences, are equal.

1. Introduction

This paper is a response to remarks and questions from article [FGT]. A

proper ideal I ⊂ P(N) containing all singletons {n}, n ∈ N, will be called

admissible. We will consider only such ideals. For an ideal I, let I∗ denote

its dual filter. The authors of [FGT] consider the vector space l∞(I) of all

I-bounded sequences x ∈ RN. Recall that x ∈ RN, x = (xn)n∈N, belongs to

l∞(I) whenever there exists a set K ∈ I∗ such that the restriction x�K is

bounded in usual sense. A sequence x ∈ RN is called I-convergent to t ∈ R

if for every ε > 0 we have {n ∈ N : |xn − t| ≥ ε} ∈ I (if such a t exists then

it is unique, and we write t = I-limx). By c(I) we denote the set of all

I-convergent sequences, and by c0(I) – the set of all sequences I-convergent

to 0. We say that a sequence x ∈ RN, x = (xn)n∈N, has finite I-variation if

there is a set K = {k1 < k2 < ...} ∈ I∗ such that

Varx�K :=
∞∑
n=1

|xkn − xkn+1 | <∞.
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By W (I) we will denote the set of all sequences with finite I-variation. Let

c∗(I) stand for the set of all sequences x ∈ RN such that there is a set

K = {k1 < k2 < ...} ∈ I∗ with limn→∞ xkn = l for some l ∈ R. We then

say that the sequence x is restrictively I-convergent to l. Additionaly put

M(I) = {x ∈ l∞(I) : ∃K ∈ I∗(x�K is monotone)}. Note thatM(I) ⊂W (I)

for any ideal I. The main result of [FGT] states that the following inclusions

hold:

W (I) ⊂ c∗(I) ⊂ c(I) ⊂ l∞(I).

The first part of our paper is devoted to proving the completeness of the

quotient space l∞(I)/c0(I). In the second part, we investigate in particular

whether there exists an admissible ideal I, for which the equality W (I) =

c∗(I) holds. Using set-theoretic assumption that p = c we show that there

is an admissible I with W (I) = c∗(I).

2. Quotient space l∞(I)/c0(I)

In [FGT] the following seminorm on l∞(I) was introduced:

||x||I∞ = inf{λ > 0 : (∃K ∈ I∗) (∀n ∈ K) |xn| ≤ λ}.

In [FGT, Remark 2] the authors state that for If , the ideal of all finite

subsets of N, the set l∞(If ) with the above seminorm is the classical Banach

space l∞R (N) of all bounded sequences. This is not exactly true because

|| · ||If
∞ is only a seminorm on l∞(If ). Note that ||x||If

∞ = 0 if and only if x

is convergent to zero in usual sense. Then, for example, if x = (1/n)n∈N, we

have ||x||If
∞ = 0, while sup-norm of x equals 1. On the other hand, observe

that the equality l∞(If ) = l∞R (N) holds if we consider only the sets without

their structures.

The authors of [FGT] ask whether, for any admissible ideal I, the space

l∞(I) is complete. Since || · ||I∞ is not a norm, one should reformulate this

question in a proper manner. For any admissible ideal I, we define an
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equivalence relation on l∞(I):

∀x, y ∈ l∞(I) (x ∼ y ⇔ ||x− y||I∞ = 0).

Observe that ||x||I∞ = 0 iff x is I-convergent to zero. So, we may consider

the quotient normed space l∞(I)/c0(I) consisting of all equivalence classes

[x]∼ for x ∈ l∞(I). Now the question reads as follows: is l∞(I)/c0(I) a

Banach space, for any admissible ideal I?

Before answering it, recall some notation. By βN we denote the Čech-

Stone compactification of N. For an admissible ideal I, let PI stand for the

set of all proper ultrafilters p in P(N) such that
⋂
p = ∅ and I ⊂ p∗ where

p∗ means a dual (maximal) ideal to p. In [BS] it is proved that PI is a closed

subset of βN. In further considerations we will also use the following fact:

(1)
⋂
p∈PI

p = I∗,

whose proof is immediate. Finally, let C(PI) denote the Banach space of all

continuous functions f : PI → R where a topology in PI is inherited from

βN.

Theorem 1. For every admissible ideal I ⊂ P(N), the spaces l∞(I)/c0(I)

and C(PI) are isometrically isomorphic. Consequently, l∞(I)/c0(I) is a

Banach space.

Proof. Let I be an admissible ideal and x ∈ l∞(I). By [FGT, Proposition

3], for every p ∈ PI the notion of p∗-boundedness of x is equivalent to

p∗-convergence of x. So, we may define fx : N∪PI → R by the formula

fx(p) =

 xp for p ∈ N

p∗- limx for p ∈ PI .

At first, we will show that fx is continuous. Recall that the topology in

N∪PI is generated by a base of the form

{U ∪ U∗ : U ⊂ N},
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where U∗ := {p ∈ PI : U ∈ p}. Since every point p ∈ N is isolated in N∪PI ,

then fx is continuous at p ∈ N. Fix p ∈ PI . Then fx(p) = p∗-limx, and

hence

(∀ε > 0) A(ε) := {n ∈ N : |xn − fx(p)| < ε} ∈ p.

We want to show that

(∀ε > 0) (∃U– a neighborhood of p) fx(U) ⊂ (fx(p)− ε, fx(p) + ε).

Fix ε > 0. Define U = A( ε2) ∪ A( ε2)∗. Then the set U is open in N ∪ PI
and p ∈ U. Let q ∈ U. If q ∈ A( ε2) then |xq − fx(p)| < ε

2 < ε which,

by definition of fx, gives us that |fx(q) − fx(p)| < ε. If q ∈ A( ε2)∗ then

{n ∈ N : |xn− fx(q)| < ε
2} ∈ q, and {n ∈ N : |xn− fx(p)| < ε

2} ∈ q. So, there

is n0 ∈ {n ∈ N : |xn − fx(q)| < ε
2} ∩ {n ∈ N : |xn − fx(p)| < ε

2}, and finally

we have

|fx(p)− fx(q)| ≤ |fx(p)− xn0 |+ |xn0 − fx(q)| < ε

2
+
ε

2
= ε.

Now let us define a function Φ: l∞(I)/c0(I) → C(PI) by the formula

Φ([x]∼) = fx�PI . Observe that if y ∈ [x]∼ then Φ([x]∼) = Φ([y]∼), hence

Φ is well defined. Observe also that Φ is a bijection. Indeed, if f ∈ C(PI)

then since PI is a closed set and βN is a normal space, we can, by the Tietze

theorem, extend f to a continuous function F : βN→ R. Let xn = F (n) for

n ∈ N. Then the sequence x = (xn) is bounded in usual sense, and therefore

x is also I-bounded. By the density of N in βN, it is clear that Φ([x]∼) = f ,

so Φ is a surjection. The function Φ is an injection, because by (1) the

following equivalence holds:

(∀x, y ∈ l∞(I)) (x ∼ y ⇔ fx−y(p) = 0 for every p ∈ PI).

Now, let us show that ||[x]∼||∞I = sup
p∈PI
|p∗- limx|. Denote

A := {λ > 0: (∃K ∈ I∗) (∀n ∈ K) |xn| ≤ λ},

B := {t ≥ 0: (∃p ∈ PI)|p∗- limx| = t}.
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It is clear that

B := {t ≥ 0: (∃δ ∈ {−1, 1})(∃p ∈ PI) (∀ε > 0) {n ∈ N : |xn − δt| ≤ ε} ∈ p}.

We will prove that λ0 := inf A = supB =: t0. Let t > λ0, δ ∈ {−1, 1} and

p ∈ PI be arbitrary. Then there is a K ∈ I∗ such that |xn| ≤ (λ0 + t)/2 for

every n ∈ K. So L = {n ∈ N : |xn−δt| ≤ (t−λ0)/3} satisfies L ⊂ N\K ∈ I.

Hence L /∈ p so t /∈ B, and t0 ≤ λ0 follows.

Assume now that λ > t0. Fix p ∈ PI and ε ∈ (0, λ − t0). There exist

t ∈ [0, t0] and δ ∈ {−1, 1} such that {n ∈ N : |xn − δt| ≤ ε} ∈ p. Observe

that

{n ∈ N : |xn − δt| ≤ ε} ⊂ {n ∈ N : |xn| ≤ t+ ε}

⊂ {n ∈ N : |xn| ≤ t0 + ε} ⊂ K0 := {n ∈ N : |xn| ≤ λ} ∈ p.

By (1) we have that K0 ∈ I∗, consequently λ0 ≤ t0.

Ending the proof, since Φ is obviously a linear operator, we infer that Φ

is an isometrical isomorphism. �

Corollary 2. Let I = If , thus PI = βN\N and c0(I) = c0 – the set of all

sequences convergent in usual sense to zero. Then the spaces l∞(I)/c0 and

C(βN\N) are isometrically isomorphic, that is why l∞(I)/c0 is a Banach

space.

The above fact can be also deduced from [S, Theorem 4.2.2, p.77].

3. On the equality W (I) = c∗(I)

In this part of the paper, we will investigate problems connected with

the notions of I-variation and I-convergence. We give a consistent positive

answer to the following question asked in [FGT] (in fact we prove something

more):

“Does there exist an admissible ideal I such that W (I) = c∗(I)?”

From now on, filters on N will be denoted by F . So, F∗ denotes the dual

ideal of a filter F . For any set A, by [A]N we denote the set of all countably
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infinite subsets of A. All filters we will consider, contain the Fréchet filter

I∗f (i.e. the filter consisting of all co-finite subsets of N). Note that an ideal

is admissible if and only if its dual filter contains the Fréchet filter. Assume

that a set A ⊂ N has infinite intersection with every set from F . Then by

〈F , A〉 we denote the filter generated by F ∪ {A}. We say that a filter F

is κ-generated if there is a family {Aα : α < κ} of subsets of N such that

I∗f ∪ {Aα : α < κ} generates F .

We say that X is almost contained in Y (and write X ⊂∗ Y ) if X \ Y is

finite. An ideal I ⊂ P(N) is called a P-ideal if for every sequence (An)n∈N

of sets in I there is A ∈ I such that An ⊂∗ A for every n. An ultrafilter F is

called a P-point if for any partition (Rn) of N, either there is n with Rn ∈ F

or there is U ∈ F such that |Rn ∩ U | < ω for all n. It is easy to see that

the dual ideal F? to a P-point F is a maximal P-ideal. By [KSW, Theorem

3.2], I is a P-ideal if and only if c∗(I) = c(I) (in [KSW], instead of P-ideals,

ideals with property (AP) are considered but these two notions coincide).

By [FGT, Proposition 3], I is a maximal ideal if and only if c(I) = l∞(I).

Hence I is a maximal P-ideal if and only if c∗(I) = c(I) = l∞(I). Note

that the existence of P-points is independent of ZFC, see [W].

The pseudo-intersection number is defined as follows [V]:

p = min{|A| : A ⊂ [N]N, A has SFIP and ¬(∃X ∈ [N]N)(∀Y ∈ A) X ⊂∗ Y }.

Here SFIP stands for strong finite intersection property which means that

every finite subset of A ⊂ [N]N has infinite intersection. Note that ω1 ≤ p ≤

c. Consistently, these inequalities can be strict, or p = ω1 or p = c. In the

sequel we will use the fact that p = c is consistent (for instance, it holds

under CH or MA).

Proposition 3. Assume that a filter F is κ-generated for some κ < p. If

K ∈ [N]N with K /∈ F∗, then there is L ⊂ K such that [L]N ∩ F∗ = ∅.

Proof. Let {Aα : α < κ} be a family of subsets of N which generates F . Then

every set in F is a superset of
⋂
α∈F Aα \G for some finite sets F,G. Since
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K /∈ F∗, it follows that K ∩
⋂
α∈F Aα is infinite for every finite F . By κ < p

we can pick an infinite L ⊂ K almost contained in every K ∩ Aα, α < κ.

Hence each infinite subset of L has the same property. So [L]N∩F∗ = ∅. �

Theorem 4. Assume that p = c. Let τ < p. Suppose that B1, B2 are two

properties of sequences x ∈ RN such that:

(a) for all x ∈ RN and K ∈ [N]N, if x�K has B1, then there is L ∈ [N]N,

L ⊂ K, such that x�L has B2;

(b) B1 is closed under taking subsequences, i.e. for all x ∈ RN, L,K ∈

[N]N, if L ⊂ K and x�K has B1, then x�L has B1.

If a filter F is τ -generated, then F can be extended to a filter F ′ such that

for any x ∈ RN and K ∈ F ′, if x�K has B1, then there is L ∈ F ′, L ⊂ K,

such that x�L has B2 .

Proof. Define K = {(x,K) ∈ RN × [N]N : x�K has B1}. If K is empty, then

the assertion trivialy holds. Otherwise by (b) the family K has cardinality

c. Let K = {(xα,Kα) : α < c}. We will define a family {Fα : α < c} of

filters on N such that:

(i) F0 = F ;

(ii) Fα is τ + |α|-generated;

(iii) Fα ⊂ Fβ for α < β;

(iv) if Kα /∈ (
⋃
γ<αFγ)∗, then there is L ⊂ Kα such that L ∈ Fα and

(xα)�L has B2.

Step α. If Kα ∈ (
⋃
γ<αFγ)∗, then by Proposition 3 there is an infinite

set L ⊂ N \ Kα with [L]N ∩ (
⋃
γ<αFγ)∗ = ∅. Put Fα = 〈

⋃
γ<αFγ , L〉. If

Kα /∈ (
⋃
γ<αFγ)∗, then by Proposition 3 there is L′ ⊂ Kα with [L′]N ∩

(
⋃
γ<αFγ)∗ = ∅. By (b) the sequence (xα)�L′ has B1. Hence by (a) there is

infinite L ⊂ L′ such that (xα)�L has B2. Put Fα = 〈
⋃
γ<αFγ , L〉.

Let F ′ =
⋃
α<cFα. By the construction, for each x ∈ RN with x�K having

B1 for some K ∈ F ′, there exists L ∈ F ′ such that x�L has B2. �
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The following corollary gives a consistent positive answer to the problem

posed by Faisant, Grekos and Toma in [FGT, Remark 7].

Corollary 5. It is independent of ZFC that there is an ideal I with l∞(I) =

M(I). In particular it is consistent that W (I) = c∗(I) for some I.

Proof. Let B1 denote the property of being bounded and let B2 denote the

property of being monotone. Starting with the Fréchet filter I∗f and assum-

ing that p = c, by Theorem 4 we find F ′ ⊃ I∗f with l∞(F ′∗) ⊂M(F ′∗).

As we have mentioned above, l∞(I) = M(I) implies that I∗ is a P -point.

Hence in Shelah’s model in which there is no P -points (see [W]), equality

l∞(I) = M(I) cannot hold for any ideal I. �

One can ask if the problem raised by Faisant, Grekos and Toma is decid-

able in ZFC, and how many monotone subsequences there are in a bounded

sequence.

Problem 6. Does there exist in ZFC an ideal I with W (I) = c∗(I)?

Problem 7. Assume that W (I) = c∗(I). Is it true that M(I) = c∗(I)?

Another problem posed in [FGT, Remark 4] is the following. Assume

that W (F∗) $ c∗(F∗). Does there exist F /∈ F∗ such that

W (〈F , F 〉∗) $ c∗(〈F , F 〉∗)?

We give a partial answer.

Proposition 8. Let κ < p. Assume that a filter F is κ-generated. Then

W (F∗) $ c∗(F∗).

Proof. Let {Aα : α < κ} be a set of generators of F . Find L ∈ [N]N such

that L ⊂∗ Aα for any α < κ. Let L = {l1 < l2 < ...}. Define xn = 0 if n /∈ L,

and xn = (−1)i/i if n = li ∈ L. Since x converges to 0, then x ∈ c∗(F∗).

On the other hand, if K ∈ F , then L ⊂∗ K. Hence Varx�K = ∞ and

x /∈W (F∗). �
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Proposition 8 gives a sufficient condition for a strict inclusion W (I) $

c∗(I). This is not a necessary condition. Indeed, let Id stand for the ideal

subsets of N of asymptotic density zero, see [FGT]. Then the sequence

((−1)n/n) is a witness for W (Id) $ c∗(Id) (see [FGT, Proposition 6]). By

[LV, Theorem 1], Id is not τ -generated for any τ < d. Since p ≤ d, then Id
is not τ -generated for any τ < p (we refer the reader to [V] for definition of

d and its properties).
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